积分与求导的关系:
$$\frac{d}{dx} F(x) = f(x) \Rightarrow F(x) = \int f(x) dx$$
符号运算可以用 sympy
模块完成。
先导入 init_printing
模块方便其显示:
from sympy import init_printing
init_printing()
from sympy import symbols, integrate
import sympy
产生 x 和 y 两个符号变量,并进行运算:
x, y = symbols('x y')
sympy.sqrt(x ** 2 + y ** 2)
对于生成的符号变量 z
,我们将其中的 x
利用 subs
方法替换为 3
:
z = sympy.sqrt(x ** 2 + y ** 2)
z.subs(x, 3)
再替换 y
:
z.subs(x, 3).subs(y, 4)
还可以从 sympy.abc
中导入现成的符号变量:
from sympy.abc import theta
y = sympy.sin(theta) ** 2
y
对 y 进行积分:
Y = integrate(y)
Y
计算 $Y(\pi) - Y(0)$:
import numpy as np
np.set_printoptions(precision=3)
Y.subs(theta, np.pi) - Y.subs(theta, 0)
计算 $\int_0^\pi y d\theta$ :
integrate(y, (theta, 0, sympy.pi))
显示的是字符表达式,查看具体数值可以使用 evalf()
方法,或者传入 numpy.pi
,而不是 sympy.pi
:
integrate(y, (theta, 0, sympy.pi)).evalf()
integrate(y, (theta, 0, np.pi))
根据牛顿莱布尼兹公式,这两个数值应该相等。
产生不定积分对象:
Y_indef = sympy.Integral(y)
Y_indef
print type(Y_indef)
定积分:
Y_def = sympy.Integral(y, (theta, 0, sympy.pi))
Y_def
产生函数 $Y(x) = \int_0^x sin^2(\theta) d\theta$,并将其向量化:
Y_raw = lambda x: integrate(y, (theta, 0, x))
Y = np.vectorize(Y_raw)
%matplotlib inline
import matplotlib.pyplot as plt
x = np.linspace(0, 2 * np.pi)
p = plt.plot(x, Y(x))
t = plt.title(r'$Y(x) = \int_0^x sin^2(\theta) d\theta$')
数值积分:
$$F(x) = \lim_{n \rightarrow \infty} \sum_{i=0}^{n-1} f(x_i)(x_{i+1}-x_i) \Rightarrow F(x) = \int_{x_0}^{x_n} f(x) dx$$
导入贝塞尔函数:
from scipy.special import jv
def f(x):
return jv(2.5, x)
x = np.linspace(0, 10)
p = plt.plot(x, f(x), 'k-')
quad
函数¶Quadrature 积分的原理参见:
http://en.wikipedia.org/wiki/Numerical_integration#Quadrature_rules_based_on_interpolating_functions
quad 返回一个 (积分值,误差) 组成的元组:
from scipy.integrate import quad
interval = [0, 6.5]
value, max_err = quad(f, *interval)
积分值:
print value
最大误差:
print max_err
积分区间图示,蓝色为正,红色为负:
print "integral = {:.9f}".format(value)
print "upper bound on error: {:.2e}".format(max_err)
x = np.linspace(0, 10, 100)
p = plt.plot(x, f(x), 'k-')
x = np.linspace(0, 6.5, 45)
p = plt.fill_between(x, f(x), where=f(x)>0, color="blue")
p = plt.fill_between(x, f(x), where=f(x)<0, color="red", interpolate=True)
from numpy import inf
interval = [0., inf]
def g(x):
return np.exp(-x ** 1/2)
value, max_err = quad(g, *interval)
x = np.linspace(0, 10, 50)
fig = plt.figure(figsize=(10,3))
p = plt.plot(x, g(x), 'k-')
p = plt.fill_between(x, g(x))
plt.annotate(r"$\int_0^{\infty}e^{-x^1/2}dx = $" + "{}".format(value), (4, 0.6),
fontsize=16)
print "upper bound on error: {:.1e}".format(max_err)
假设我们要进行如下的积分:
$$ I_n = \int \limits_0^{\infty} \int \limits_1^{\infty} \frac{e^{-xt}}{t^n}dt dx = \frac{1}{n}$$
def h(x, t, n):
"""core function, takes x, t, n"""
return np.exp(-x * t) / (t ** n)
一种方式是调用两次 quad
函数,不过这里 quad
的返回值不能向量化,所以使用了修饰符 vectorize
将其向量化:
from numpy import vectorize
@vectorize
def int_h_dx(t, n):
"""Time integrand of h(x)."""
return quad(h, 0, np.inf, args=(t, n))[0]
@vectorize
def I_n(n):
return quad(int_h_dx, 1, np.inf, args=(n))
I_n([0.5, 1.0, 2.0, 5])
或者直接调用 dblquad
函数,并将积分参数传入,传入方式有多种,后传入的先进行积分:
from scipy.integrate import dblquad
@vectorize
def I(n):
"""Same as I_n, but using the built-in dblquad"""
x_lower = 0
x_upper = np.inf
return dblquad(h,
lambda t_lower: 1, lambda t_upper: np.inf,
x_lower, x_upper, args=(n,))
I_n([0.5, 1.0, 2.0, 5])
from scipy.integrate import trapz, simps
sin
函数, 100
个采样点和 5
个采样点:
x_s = np.linspace(0, np.pi, 5)
y_s = np.sin(x_s)
x = np.linspace(0, np.pi, 100)
y = np.sin(x)
p = plt.plot(x, y, 'k:')
p = plt.plot(x_s, y_s, 'k+-')
p = plt.fill_between(x_s, y_s, color="gray")
采用 trapezoidal 方法 和 simpson 方法 对这些采样点进行积分(函数积分为 2):
result_s = trapz(y_s, x_s)
result_s_s = simps(y_s, x_s)
result = trapz(y, x)
print "Trapezoidal Integration over 5 points : {:.3f}".format(result_s)
print "Simpson Integration over 5 points : {:.3f}".format(result_s_s)
print "Trapezoidal Integration over 100 points : {:.3f}".format(result)
Numpy
中有很多 ufunc
对象:
type(np.add)
np.info(np.add.accumulate)
np.add.accumulate
相当于 cumsum
:
result_np = np.add.accumulate(y) * (x[1] - x[0]) - (x[1] - x[0]) / 2
p = plt.plot(x, - np.cos(x) + np.cos(0), 'rx')
p = plt.plot(x, result_np)
计算积分:$$\int_0^x sin \theta d\theta$$
import sympy
from sympy.abc import x, theta
sympy_x = x
x = np.linspace(0, 20 * np.pi, 1e+4)
y = np.sin(x)
sympy_y = vectorize(lambda x: sympy.integrate(sympy.sin(theta), (theta, 0, x)))
numpy
方法:
%timeit np.add.accumulate(y) * (x[1] - x[0])
y0 = np.add.accumulate(y) * (x[1] - x[0])
print y0[-1]
quad
方法:
%timeit quad(np.sin, 0, 20 * np.pi)
y2 = quad(np.sin, 0, 20 * np.pi, full_output=True)
print "result = ", y2[0]
print "number of evaluations", y2[-1]['neval']
trapz
方法:
%timeit trapz(y, x)
y1 = trapz(y, x)
print y1
simps
方法:
%timeit simps(y, x)
y3 = simps(y, x)
print y3
sympy
积分方法:
%timeit sympy_y(20 * np.pi)
y4 = sympy_y(20 * np.pi)
print y4